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ABSTRACT

In past decades, there has been an upsurge in the development of three-dimensional

(3D) shape measurement and its applications. Over the years, there are a variety of tech-

nologies developed including laser scanning, stereo vision, and structured light. Among

these technologies, the structured-light technique has the advantages of fast computation

speeds and high measurement resolution. Therefore, it has been extensively studied in

this field of research. Nowadays, with the rapid development of digital devices, different

kinds of patterns can be easily generated by a video projector. As a result, digital fringe

projection (DFP), a variation of the structured light method, has had many applications

owing to its speed and accuracy.

Typically, for a DFP system, ideal sinusoidal fringe pattern projection is required for

high accuracy 3D information retrieval. Since traditional DFP projects 8-bit sinusoidal

fringe patterns, it suffers from some major limitations such as the speed limit (e.g., 120

Hz), the requirement for nonlinear gamma calibration, and the rigid synchronization

requirement between the projector and the camera. To overcome these limitations, the

binary defocusing technology was developed which projects 1-bit square binary pattern

and generates ideal sinusoidal pattern through projector defocusing.

In the past few years, the binary defocusing technique has shown great potential

for many applications owing to its speed breakthroughs, nonlinear gamma calibration

free and no rigid synchronization requirement between the camera and the projector.

However, a typical square binary pattern suffers from some major limitations: (1) high-

order harmonics, introduced by a square wave, which affect the accuracy of measurement,

cannot be completely eliminated by projector defocusing; (2) a reduced measurement
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volume since the projector needs to be properly defocused to generate the desired high-

quality sinusoidal patterns; and (3) difficulty achieving high-quality measurements with

wider square binary patterns.

The binary dithering technique, originally developed for printing technology, is found

to have great potential for overcoming these aforementioned limitations of the square

binary method. However, the binary dithering technique, which simply applies a matrix

operation to the whole image, still has great room for improvement especially when the

fringe patterns are not sufficiently defocused. Although there have been past efforts

made to improve the performance of dithering techniques for 3D shape measurement,

those approaches are either computationally expensive or fail to improve the quality with

different amounts of defocusing.

In this research, we aim at further improving the binary dithering technique by op-

timizing the dithered patterns in intensity domain. We have developed both global and

local optimization frameworks for improving dithered patterns. Our simulation and ex-

perimental results have demonstrated that: the global optimization framework improves

the Bayer-order dithering technique by approximately 25% overall and up to 50% for

narrower fringe patterns (e.g. fringe period of T = 18 pixels); the local optimization

framework can improve the performance of a more advanced error-diffusion dithering

technique by 20% overall and up to 40% for narrower fringe patterns (e.g. T = 18 pix-

els). Moreover, since the local algorithm involves optimizing a small image block and

building up the desired-size patterns using symmetry and periodicity, it is much faster

in terms of optimization time than the global algorithm.
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CHAPTER 1. GENERAL INTRODUCTION

This chapter serves as a general introduction to the entire thesis. In this chapter,

the relevant 3D shape measurement technologies will be introduced, the motivation and

objectives will be presented, and the organization of the thesis will be explained. Part

of this chapter was originally published in Optics and Lasers in Engineering (Dai et al.,

2014b).

1.1 State of The Art

1.1.1 3D shape measurement techniques

This section introduces some major 3D shape measurement techniques that are closely

related to this research. For each technique, the strengths and weaknesses will be ad-

dressed.

1.1.1.1 Laser scanning

3D laser scanning technology is widely adopted in 3D optical metrology. There are a

variety of 3D scanners developed which can be divided into two major categories: time-of-

flight (TOF) 3D laser scanners which requires no triangulation and triangulation-based

3D laser scanners.

(1) TOF laser scanner

The TOF laser scanner essentially emits pulses of laser light onto the object, and a

laser range finder is used to detect the reflected pulse of light. The distance to a surface
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is calculated based on the round-trip traveling time of the emitted light pulse. Suppose

the speed of light, c, and the round-trip time, t, are known; the distance is equal to

c · t/2. However, due to the extremely fast speed of the light, it is difficult to achieve a

high depth resolution (e.g. a timing sensor resolution of 3.3 piscoseconds is required to

resolve 1.00 mm in depth). Therefore, the majority of TOF technologies modulate the

light source at a constant frequency and measure the phase difference before and after

the round trip, and the depth is then determined from the phase difference, which is

proportional to the depth.

The main advantage of the TOF laser scanner is its compact design, since the light

source and the sensor have the same viewing angle. However, the TOF laser scanners

usually have a limited spatial and depth resolution. This is owing to the complexity of

manufacturing a sensor that can simultaneously record the light intensity and the phase

information.

(2) Triangulation-based 3D laser scanner

The triangulation-based 3D laser scanner typically includes a laser emitter, a detector,

and a lens which focuses the laser beam onto the detector. The laser light source shines

a laser line or dot onto the object, and the reflected light will be sensed by the detector.

The depth information can be retrieved by triangulating the laser emitting point, the

reflecting point on the object surface, and the sensing point on the detector.

A triangulation-based laser scanner can achieve high spatial and depth resolution and

is capable of measuring large scale objects, such as buildings or ships. However, the laser

triangulation method is usually quite slow since only a laser line or dot is swept at a

time, thus making it difficult to measure a rapidly moving object. Area-based 3D shape

measurement can achieve faster measurement speeds and will be introduced next.



www.manaraa.com

3

1.1.1.2 Stereo vision

The basic principle of a stereo vision system essentially imitates the human vision

system: two cameras capture 2D images of 3D real world objects from two different

viewing angles. The relationship between the real world 3D points and their perspective

projections on 2D camera image planes is called epipolar geometry. Figure 1.1 illustrates

the principle of a typical stereo vision system, where OL and OR are the centers of

projection of the two cameras, EL and ER are the epipolar points, and PL and PR are

the projections of the real world point P on the camera image planes. The projection

line POL is viewed as a single point PL on the left camera, while it is perceived as an

epipolar line ERPR on the right camera. Similarly, the projection line POR will be seen

as an epipolar line ELPL on the left camera.

P
P1

P2

P3

PL
PR

EL ER

OL OR

Left Camera Right Camera

Figure 1.1 Schematic diagram of a stereo vision system.

The projection from a 3D world coordinate to a camera image coordinate is typically

described by

s


u

v

1

 = A

[
R t

]


X

Y

Z

1


, (1.1)

where [X, Y, Z, 1]T represents the point in the homogeneous world coordinate system,
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[u, v, 1]T denotes the point in the homogeneous image coordinate system with the prin-

ciple point [u0, v0, 1]T , and A is the intrinsic matrix represented as

A =


fu α u0

0 fv v0

0 0 1

 . (1.2)

Here, fu and fv are the focal lengths along u and v axes, respectively. [R, t] is the

extrinsic matrix that transforms the world coordinate to a camera lens coordinate, and

s is the scale factor. Both the intrinsic and the extrinsic matrices can be determined

through numerous camera calibration approaches (Duane, 1971; Sobel, 1974; Tsai, 1987;

Zhang, 2000; Lavest et al., 1998; Albarelli et al., 2009; Strobl and Hirzinger, 2011; Huang

et al., 2013b; Schmalz et al., 2011; Huang et al., 2013a).

The key point for a stereo vision system is to detect feature points and determine

correspondence between two camera images. For each correspondence pair, the 3D point

(X, Y, Z) can be uniquely determined in the least square sense by solving the over-

determined system of linear equations: Eq. 1.1 for both cameras resulting in six equations

and five unknowns. The stereo vision system has the merits of low cost and simple

setup, and it also enables the measurement of a whole area at once, meaning it can

achieve higher measurement speeds than laser scanning techniques. However, the stereo

vision technique has the major difficulty that it is computationally expensive to find

correspondence pairs. Moreover, in cases such as the existence of regions of uniform or

periodical texture, the correspondence detection might fail.

1.1.1.3 Structured light

The basic principle of a structured-light system is similar to that of a stereo vision

system, except that one of the two cameras is replaced with a projection device. The

projection unit projects a known pattern onto the object to assist in the establishment

of correspondence. Several different pattern coding strategies have been developed for
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structured-light systems, including random or pseudo-random codifications, and binary

structured codifications and N-ary codifications.

(1) Random or pseudo-random codifications

In order to obtain the 3D information, the correspondence between a camera pixel

and a projector pixel needs to be established, and this could be done by projecting digital

pseudo-random patterns or using laser speckles (Huang et al., 2013c). In this way, the

pixels are unique in both the u and v directions over the entire image. This method makes

it easy to find correspondence pairs, and thus it is adopted in some applications, such as

the first generation of Microsoft Kinect. However, the spatial resolution of this approach

is limited by both the camera and projector spatial resolutions. Moreover, to determine

3D coordinates, two sets of Eq. 1.1 are needed which contain six linear equations but

only five unknowns (X, Y, Z, sp, sc), where sp and sc are the scale factors of the projection

unit and camera respectively. Owing to the redundancy of one additional equation, the

encoded pattern does not have to be unique in both the u and v directions, and thus

it is natural to choose patterns that vary in only one direction. One of the popular

approaches of this type is binary structured codification.

(2) Binary structured codifications

Binary structured codifications essentially project a sequence of binary coded pat-

terns, as illustrated in Fig. 1.2, onto the object, to define codewords. Then the 3D infor-

mation is decoded by referring to the codeword of each point (Posdamer and Altschuler,

1982). This approach is robust to noise since only two intensity levels (0s and 255s) are

used. However, the resolution of this method is determined by the narrowest binary pat-

tern used shown in Fig. 1.2(a), the length of a black or white stripe is usually bigger than

a projector pixel, thus making it difficult to reach projector pixel-level spatial resolution.

In addition, for high-resolution measurement, it requires projection of many patterns

(e.g. more than 10 images to encode 1024 columns or 768 rows); therefore, it is difficult

to achieve high-speed measurement. To address this problem, N-ary codifications could
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be used which use more than two grayscale values.

(a) (b) (c) (d)

Figure 1.2 Example of codified binary pattern sequence

(3) N-ary codifications

Instead of using only two intensity levels (0 and 255), N-ary codifications divide the

full range of grayscale values (0 to 255) into N bins, and the codeword for each pixel

is determined by the intensity ratio (Carrihill and Hummel, 1985; Chazan and Kiryati,

1995). N-ary codifications overcome the speed limitation of the binary structured cod-

ifications by reducing the number of patterns for projection. However, compared with

binary structured codifications, N-ary codifications are more sensitive to noise and image

defocusing due to the increased range of grayscale values. Furthermore, similar to the

other two aforementioned codifications, they are still limited by the projector pixel reso-

lution. To overcome the limitations of this coding strategy, several other approaches us-

ing phase-shifting techniques have been developed, including the triangular method (Jia

et al., 2007) and the trapezoidal method (Huang et al., 2005). These approaches could

reach camera pixel-level accuracy and are less sensitive to image defocusing. However,

the problem caused by defocusing cannot be completely circumvented.

1.1.1.4 Digital fringe projection (DFP)

According to Zhang (2010), the above mentioned 1-dimensional varying (binary, N-

ary, triangular, trapezoidal) patterns eventually become a sinusoidal shape if properly

defocused. Thus, it is natural to think of using sinusoidal patterns. Sinusoidal patterns

have the potential to reach camera pixel-level accuracy since for each cross-section, the
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intensity values vary from one point to another and this variation is differentiable between

neighboring pixels. DFP is a technology that uses a digital video projector to project

computer-generated sinusoidal fringe patterns onto an object; from the distorted fringe

image captured by the camera, the 3D information can be retrieved. Unlike the intensity-

based methods, the phase information is used in DFP technology to retrieve the 3D

information since phase information is more robust to noise. A detailed description of

3D reconstruction using phase information will be introduced in Chapter 2.

In recent years, DFP technology has been extensively adopted because of its speed

and accuracy (Geng, 2011). However, DFP technology is not trouble free. Since it

requires the projection of 8-bit sinusoidal patterns, the measurement speed is limited by

the maximum frame rate of the projector (typically 120 Hz) (Zhang, 2010). Moreover, it

requires precise camera-projector synchronization (Lei and Zhang, 2010). Furthermore,

most video projectors are nonlinear, making it difficult to generate high quality phase

without gamma correction (Lei and Zhang, 2009).

1.1.2 Digital fringe projection technology using binary defocusing technique

To address the challenges of the conventional DFP technique, our research group

recently developed the binary defocusing technique (Lei and Zhang, 2009), which gen-

erates sinusoidal fringe patterns by projecting 1-bit square binary patterns with an out-

of-focus projector. This technique has successfully made speed breakthroughs (Zhang

et al., 2010). Meanwhile, it is gamma calibration free and does not require rigid camera-

projector synchronization. However, the binary defocusing technique is not trouble free:

the measurement accuracy is affected by high-order harmonics, and the measurement

range is smaller than that for the conventional DFP technique (Xu et al., 2011).

Modulation techniques were proposed to improve the fringe quality of the binary de-

focusing technique; these modulate the binary patterns according to the ideal sinusoidal

patterns. These techniques include 1D modulations and 2D modulations. The pulse
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width modulation (PWM) techniques (Ayubi et al., 2010; Wang and Zhang, 2010; Zuo

et al., 2012, 2013) belong to the 1D modulation category. The PWM technique essen-

tially modulates the binary pattern such that the high-frequency harmonics can be more

easily suppressed or eliminated after defocusing. The 1D methods all achieved better

measurement quality when compared with the squared binary method. However, these

techniques have limited improvements when fringe stripes are wide (Wang and Zhang,

2012). Xian and Su (2001) proposed a 2D area modulation technique that could generate

high-quality fringe patterns if the manufacturing precision is high enough. But this area

modulation technique is difficult to implement in a DFP system since it requires more

precisely manufactured pixels than a digital video projector can provide. Our research

group recently proposed another 2D modulation method (Lohry and Zhang, 2012) that

locally modulates the pixels so that it is easier to generate an ideal sinusoidal pattern

by defocusing the modulated pattern. However, it is not suited for the wide fringe

patterns (Lohry and Zhang, 2013).

Dithering, also called halftoning, has been extensively studied in the fields of image

processing and printing (Schuchman, 1964). Various dithering techniques have been

proposed over the years including random dithering (Purgathofer et al., 1994), ordered

dithering (Bayer, 1973), and error-diffusion dithering (Kite et al., 2000). Wang and Zhang

(2002) have demonstrated that the Bayer dithering method could substantially improve

the measurement quality even when the fringe stripes are very wide. However, if the

patterns are nearly focused, the residual error becomes ineligible.

Recently, Dai and Zhang (2013) proposed a phase-based optimization framework to

optimize the Bayer-ordered dithering technique when the projector is nearly focused.

This method performs optimization in the phase domain by iteratively mutating the

status (0 or 1) of a binary pixel. It was demonstrated that for both narrow and wide

fringe stripes, substantial improvements could be achieved. However, this method was

not very stable for different amounts of defocusing.
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1.2 Motivation And Objectives

As discussed in the previous section, the binary dithering technique could substan-

tially improve the measurement quality of the binary defocusing technique. However,

there is still room for improvement since it only applies matrices to the whole image.

The existing optimization framework has demonstrated its success in improving the bi-

nary dithering technique. However, it suffers from non-stable performance over different

amounts of defocusing. Therefore, developing new optimization approaches for the bi-

nary dithering technique is necessary to address this limitation.

In this research, we aim at developing new algorithms that could further improve

the binary dithering technique and simultaneously achieving a more consistent accuracy

over different amounts of defocusing. Instead of optimizing the dithered patterns in the

phase domain (Dai and Zhang, 2013), we propose both a global and a local optimization

framework that optimize the dithered patterns in the intensity domain. In this thesis,

we will introduce the related theoretical background and the basic principles of these

optimization methods. Moreover, simulations and experimental results will be shown to

verify their performance.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the basic principles of the

DFP technique that we used for 3D shape measurement. Chapter 3 discusses the the-

oretical background of the binary defocusing technique and subsequent improvements.

Chapter 4 illustrates our optimization framework, and Chapter 5 summarizes the whole

thesis and discusses some directions for future work.
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CHAPTER 2. DIGITAL FRINGE PROJECTION AND 3D

RECONSTRUCTION

In this chapter, some fundamentals of digital fringe projection which were adopted

in this research will be introduced. Meanwhile, the 3D reconstruction frameworks will

also be illustrated, which includes the phase-shifting algorithms and phase-to-height

conversion. Part of this chapter was originally published in SPIE proceedings (Dai et al.,

2013).

2.1 Digital Fringe Projection (DFP) System

Figure 2.1 shows the typical setup of a DFP system. A computer generated known

fringe pattern will be sent to the video projector and projected onto the object to be

measured. Then, a camera is used to capture the distorted fringe image and send it

to the computer for further analysis. Finally, the computer will analyze the captured

fringe image and preform a 3D reconstruction based on the distortion of fringe pattern.

Typically, a sinusoidal pattern will be used for projection, as shown in Fig. 2.1, each

vertical line corresponds to a unique phase value in the frequency domain. Here we use

phase value for 3D reconstruction since compared with intensity value, phase value is

not sensitive to the ambient light variations (Karpinsky and Zhang, 2012).
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Figure 2.1 Typical setup of a DFP system.

2.2 Phase-Shifting Algorithms

In this research, phase-shifting algorithms are used for phase extraction, which are

widely applied in optical metrology due to their speed and accuracy (Malacara, 2007).

Theoretically, a fringe image I(x, y) could be expressed as

I(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y) + δ], (2.1)

where I ′(x, y) is the average intensity, I ′′(x, y) the intensity modulation, δ is the phase-

shift, and φ(x, y) the phase to be solved for. Since there are three unknowns I ′(x, y),

I ′′(x, y) and φ(x, y) in this equation, therefore, at least three different phase-shifted

images are needed for extracting the phase φ(x, y).

In this section, some different phase-shifting algorithms will be introduced, which

includes three-step phase-shifting that requires the least images and also N-step phase

shifting which solves a more general case. Finally, a multi-frequency phase-shifting algo-

rithm will be introduced for absolute phase retrieval.
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2.2.1 Three-step phase-shifting algorithm

For a three-step phase-shifting algorithm, three fringe images with equal phase shifts

of 2π/3 are used, which could be described as

I1(x, y) = I ′(x, y) + I ′′(x, y) cos(φ− 2π/3), (2.2)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos(φ), (2.3)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2π/3). (2.4)

Then, by simultaneously solving the three equations, the phase φ(x, y) could be obtained

as

φ(x, y) = tan−1
√

3(I1 − I3)
2I2 − I1 − I3

. (2.5)

2.2.2 N-step phase-shifting algorithm

Although three equally phase-shifted fringe images are enough for phase extraction,

however, the accuracy of the phase obtained from three-step is limited. Typically, the

more steps used, the better the measurement quality which could be achieved. More

generally, for an N-step phase-shifting algorithm with equal phase shifts, the fringe images

can be described as

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2kπ/N). (2.6)

In this case, the phase φ(x, y) could be solved by the following equation:

φ(x, y) = tan−1

[∑N
k=1 Ik sin(2kπ/N)∑N
k=1 Ik cos(2kπ/N)

]
. (2.7)

However, the phase provided by phase-shifting algorithms are wrapped phase or rel-

ative phase ranging [−π, +π) with 2π discontinuities. A continuous phase map can be

obtained by adopting a spatial (Ghiglia and Pritt, 1998) or temporal phase unwrapping

algorithm (Wang and Zhang, 2011). In this research, we adopted a multi-frequency

phase-shifting algorithm (Wang and Zhang, 2011) for absolute phase retrieval which will

be introduced in the next subsection.
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2.2.3 Multi-frequency phase-shifting algorithm

As mentioned previously, the phase obtained from a single fringe frequency using

phase-shifting algorithm is wrapped with 2π discontinuities. To obtain the absolute

phase map, we can take advantage of the wrapped phase extracted using different fringe

frequencies, which is called multi-frequency phase-shifting algorithm.

Taking the two-frequency phase-shifting algorithm as an example, its basic principle

could be illustrated as follows. Theoretically, the absolute phase Φ could be represented

by spatial distance h(x, y) and fringe period T ,

Φ = 2π
C · h(x, y)

T
, (2.8)

where C is a system constant. As a result, for the absolute phase Φ1 and Φ2 with

different fringe period, their difference ∆Φ12 could be deduced as

∆Φ12 = Φ1 −Φ2 = 2π
C · h(x, y)

T eq
12

, (2.9)

where T eq
12 = T1T2/ |T1 − T2| is the equivalent fringe period between T1 and T2. From

the N-step phase-shifting algorithm introduced in Sec. 2.2, we have already obtained the

wrapped or relative phase φ1 and φ2 with 2π discontinuities. The relationship between

the absolute phase and the relative phase could be expressed as

φ = mod (Φ, 2π). (2.10)

Here, mod is a modulus operator. Therefore, the difference ∆φ12 between the two

relative phase φ1 and φ2 could be represented as

∆φ12 = mod (Φ1 −Φ2, 2π) = mod

[
2π
C · h(x, y)

T eq
12

, 2π

]
. (2.11)

In this case, if the equivalent fringe period T eq
12 is properly chosen in a way such that

C · h(x, y)/T eq
12 < 1, then a continuous phase map could be obtained without 2π discon-

tinuities.
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However, practically the two-frequency algorithm is not enough since it is very sensi-

tive to the noise. Therefore, in practice, at least three frequencies are utilized to retrieve

the absolute phase. Consider we have another set of fringe patterns with fringe period

T3 and extracted relative phase φ3, then the difference ∆φ123 between the two relative

phase φ12 and φ3 could be obtained as

∆φ123 = mod (Φ12 −Φ3, 2π) = mod

[
2π
C · h(x, y)

T eq
123

, 2π

]
. (2.12)

Here T eq
123 is the equivalent fringe period obtained by T eq

123 = T12T3/ |T12 − T3|. Similarly,

if we let C · h(x, y)/T eq
123 < 1, then the absolute phase map could be obtained. Once this

absolute phase map is retried, then by reversely unwrapping the phase, we can obtain

the absolute phase map of the shortest fringe period. It should be noted that the phase

of the shortest fringe period is usually desirable since it better preserves the detailed

information of the measured object and provides better accuracy.

(a) (b) (c) (d) (e)

Figure 2.2 Absolute phase retrieval using three-frequency phase-shifting algorithm. (a)
Picture of the sculpture; (b) wrapped phase map obtained from patterns
with fringe period T1 = 18 pixels; (c) wrapped phase map obtained from
patterns with fringe period T2 = 21 pixels; (d) wrapped phase map obtained
from patterns with fringe period T3 = 159 pixels; (e) absolute phase map
obtained by applying three-frequency phase-shifting algorithm.

Figure 2.2 illustrates a typical three-frequency phase-shifting algorithm that we adopted

for absolute phase retrieval, which includes the relative phase maps obtained from high-

frequency (T = 18), medium-frequency (T = 21) and low-frequency (T = 154) fringe

patterns as well as the absolute phase map obtained after applying this algorithm. It
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demonstrates that this algorithm can indeed succeed in retrieving the absolute phase

map using the fringe images of different frequencies.

2.3 Phase-To-Depth Conversion

Once the absolute phase is obtained, the next step is to determine the depth z of the

measured object. In this research, a reference-plane-based approach introduced by Zhang

et al. (2002) is used for phase-to-depth conversion. Its schematic diagram is shown in

Fig. 2.3. Basically, a reference plane is first measured as a reference of subsequent

measurements, the depth of the object is then measured relative to that.

Figure 2.3 Schematic diagram of phase-to-height conversion.

According to the geometry of the system, the depth z could be represented as

z(x, y) = DB =
AC · l

d · (1 + AC
d

)
≈ l

d
AC ∝ ΦA −ΦC , (2.13)



www.manaraa.com

16

where ΦA and ΦC are the absolute phase values at points A and C respectively. From

the projector point of view, point D and point C share the same phase value, which

means ΦD = ΦC . In this case, it can be deduced that

z(x, y) ∝ ΦA −ΦD = Φo(x, y)−Φr(x, y), (2.14)

where Φo and Φr are the absolute phase map of the object and the reference plane

respectively. Assume that the reference plane has a depth value of z0, then the depth of

the measured point on the object can be represented as (Xu et al., 2011)

z(x, y) = z0 + c× [Φo(x, y)−Φr(x, y)], (2.15)

where c is a system constant and can be obtained through calibration.

2.4 Summary

In this chapter, the basic idea of DFP system is discussed. Then the phase-shifting

algorithm for phase extraction is introduced, and finally the 3D reconstruction based on

phase-to-depth conversion is also illustrated. In the next chapter, we will be introducing

the implementation of the binary defocusing technique which further extends the speed

and flexibility of a DFP system.
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CHAPTER 3. BINARY DEFOCUSING TECHNIQUES

In previous chapter, some fundamentals about the DFP technique and the 3D re-

construction framework were introduced. In this chapter, we will explain the binary

defocusing techniques, which make the DFP method more flexible and break the speed

bottleneck of conventional DFP techniques. First of all, some fundamentals of DLP tech-

nology will be introduced which both motivate and provide the foundation of the devel-

opment of binary defocusing techniques. Then, the principles of the binary defocusing

technique will be explained. Finally, the binary dithering techniques will be introduced

which greatly improve the performance of the squared binary defocusing technique. Part

of this chapter was originally published in the SPIE proceedings (Li et al., 2013) and

Optics and Lasers in Engineering (Li et al., 2014).

3.1 Fundamentals of Digital-Light-Processing (DLP)

Technology

Digital-Light-Processing (DLP) technology is based on an optical semiconductor

called the digital micro-mirror device (DMD). This very precise light switch modulates

the light digitally with an array of digital micro-mirrors which correspond to the pixels in

the projected image. When a digital graphics signal enters the DLP system, the micro-

mirrors will be tilted either toward or away from the light source by a tiny electrode

beneath each DMD cell. The working principle of the DMD is illustrated in Fig. 3.1.

The digital graphics signal will force the mirror to switch on (+θL) or off (−θL). A
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DLP projector produces grayscale values by time integration (Hornbeck, 1997), which

means that the brightness of a pixel will be controlled by the portion of the time that

its corresponding micro-mirror is switched on. For example, if the mirror is switched on

100% of the time, then a grayscale value of 255 will be produced. On the other hand, if

the mirror is always switched off, then a grayscale value of 0 will be created.

Lθ+Lθ−

2 Lθ2 Lθ
4 Lθ

Figure 3.1 Optical switching mechanism of digital micromirror device (DMD)

In order to better examine the working principle of DLP, a simple test was carried

out for our inexpensive DLP projector (Dell M109S). A photodiode sensor (Thorlabs

FDS100) was used to detect the output light and the photoelectric current signal was

converted into voltage signal and monitored by an oscilloscope. Figure 3.2 shows the

result when uniform images are applied to the projector. In order to simplify the test,

only the green channel is used. These experimental results showed that when the DLP

projector is fed with a pure green image (RGB = (0, 255, 0)), the channel is filled

by almost 100%. When the grayscale value is reduced to 128 and 64 respectively, it

generates irregular output, and the portion of the channel filled is reduced. In this case,

if a sinusoidal fringe pattern with grayscales varying from 0 to 255 is supplied, we would
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need to capture the whole projection cycle in order to obtain a correct capture of the

projected image. For high-speed measurement, however, this is undesirable since the

camera exposure time usually needs to be very short (Gong and Zhang, 2010).

(a) (b) (c)

Figure 3.2 Example of the voltage output at the photodiode (in red) and projector
refresh signal (in blue) if the DLP projector is fed with a uniform green
image with different grayscale values. (a) Green = 255; (b) Green = 128;
(c) Green = 64.

3.2 Binary Defocusing Technique

In the previous section, we have shown that if a DLP micro-mirror is fed with a

grayscale value of 0 or 255, it will remain on or off within the whole projection cycle.

Thus, if a DLP projector is fed with a binary image which only contains two grayscale

values (0 or 255), we do not have to capture the whole projection cycle; this is beneficial

for high-speed measurement. However, traditionally, 8-bit sinusoidal patterns are used

for the DFP technique, requiring the capture of the full projection cycle. In order to

overcome this limitation, we could approximate a sinusoidal fringe pattern by projecting

a binary pattern with a properly defocused projector; this is called “binary defocusing

technique.”

Figure. 3.3 shows a schematic diagram comparing the traditional focused sinusoidal

projection and the binary defocusing technique, illustrating these two approaches to

generating a sinusoidal fringe pattern. Traditionally, the projector was directly fed with
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8-bit sinusoidal patterns. With a focused projector, a sinusoidal pattern can be visualized

on the screen. In contrast, the binary defocusing technique feeds the projector with 1-bit

square binary patterns. If the projector is properly defocused, then a sinusoidal fringe

pattern can be generated.

Focused 
sinusoidal 
method

Binary 
defocusing 

method

Sine pattern
Projector 
(focused)

Binary pattern
Projector 

(defocused)

Screen

Figure 3.3 Schematic diagram comparing focused sinusoidal projection and the binary
defocusing technique.

The theoretical background of binary defocusing is illustrated as follows. A binary

pattern can be regarded as a square wave in mathematics. If we take a Fourier series

expansion of the square wave, the first order harmonic represents the ideal sinusoidal

wave, while higher order harmonics represent the detailed features of the square wave.

It is important to note that the square wave only contains odd-order harmonics, which

indicates that if a low pass filter that can eliminate or suppress higher order harmonics

is applied, an ideal sinusoidal wave can be approximated. The projector defocusing

technique creates a smoothing effect on the projected image which can be modeled as a

Gaussian filter, meaning that if the projector is properly defocused to a certain degree,

the projected binary image would be blurred such that a quasi-sinusoidal fringe pattern

is generated (Lei and Zhang, 2009).

Figures 3.4(a) and 3.4(b) show the example of a squared binary pattern with a period

of T = 18 pixels and its resultant pattern after Gaussian smoothing. Here, a Gaussian
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filter with the size of 13×13 and a standard deviation of 13/3 is used in order to emulate

the projector defocusing effect. Figure 3.4(c) shows the cross section of the defocused

binary pattern and Fig. 3.4(d) shows the cross section of the phase error obtained in this

case. Here, the phase was calculated using the three-step phase-shifting algorithm as

introduced in Subsec. 2.2.1, and the phase error was evaluated by comparing this phase

with the phase obtained using ideal sinusoidal patterns. This simulation indicates that

if the pattern is properly blurred, a quasi-sinusoidal fringe pattern is indeed generated.

Moreover, the phase error arising from this set of patterns is quite small with an root-

mean-square (rms) error of 0.017 rad. It is important to note that for all simulations in

this chapter, a zero-mean Gaussian noise with a standard deviation of 0.01 in intensity

is added to the original patterns in order to emulate the noise in a real experiment.
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Figure 3.4 Example that applying a Gaussian filter to a squared binary pattern can
result in a quasi-sinusoidal pattern. (a) A squared binary pattern with
a period T = 18 pixels; (b) the resultant pattern of (a) after Gaussian
smoothing with a filter size of 13 × 13; (c) cross section of (b); (d) cross
section of the phase error with rms error of 0.017 rad.

However, the binary defocusing technique is not trouble free. Since it requires the

precise control of the projector defocusing level, either too focused or too defocused

could cause problem. Figure 3.5 shows the simulation results when the pattern is too

focused, from which we can see that a nearly focused square binary pattern cannot well

represent a sinusoidal pattern, as is shown in Fig. 3.5(c). Figure 3.5(d) shows that the

phase error arising from this set of patterns is quite large (rms error of 0.062 rad), which

is almost three times worse than the previous case. Similarly, Figure 3.6 shows the
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simulation results when the pattern is too defocused. It illustrates that if the pattern

is too defocused, the phase error is also very large [Fig. 3.6(d)], with an rms error of

0.068 rad. The reduced signal-to-noise ratio caused by over defocusing, as is shown in

Fig. 3.6(c), should account for this phenomenon.
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Figure 3.5 Simulation of binary defocusing using nearly focused fringe patterns (fringe
period T = 18 pixels). (a) Original pattern; (b) the resultant pattern of (a)
after Gaussian smoothing with filter-size of 3 × 3; (c) cross section of (b);
(d) cross section of the phase error with rms error of 0.062 rad.

(a) (b)

0 50 100 150 200
0

50

100

150

200

250

X (pixel)

In
te

ns
ity

(c)

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

X (pixel)

P
ha

se
 e

rr
or

 (
ra

d)

(d)

Figure 3.6 Simulation of binary defocusing using over defocused fringe patterns (fringe
period T = 18 pixels). (a) Original pattern; (b) the resultant pattern of (a)
after Gaussian smoothing with filter-size of 21× 21; (c) cross section of (b);
(d) cross section of the phase error with rms error of 0.068 rad.

Furthermore, if the fringe period for the square binary pattern is very wide, it cannot

well generate a sinusoidal pattern even with the same amount of defocusing (Gaussian

filter size of 13 × 13). Figure 3.7 shows the simulation results when the binary defocusing

technique is applied on a very wide fringe period of T = 60 pixels, from which we can

see that even though the square binary pattern is properly defocused, it still cannot

well represent a sinusoidal wave, as is shown in Fig. 3.7(c). Moreover, the phase error
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obtained using this set of patterns is even larger, as shown in Fig. 3.7(d), with an rms

error of 0.150 rad. However, patterns with wide fringe periods are still useful especially

when using a multi-frequency phase-shifting algorithm as introduced in Subsec. 2.2.3.

Therefore, in order to improve the fringe quality, there are several techniques carried out

to modulate the square binary fringe patterns. Among all these techniques, the binary

dithering technique is found to be effective at addressing the limitations of the binary

defocusing technique. In the next section, the principles of binary dithering techniques

will be introduced.
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Figure 3.7 Simulation of binary defocusing using wide fringe patterns (T = 60 pixels).
(a) Original pattern; (b) the resultant pattern of (a) after Gaussian smooth-
ing with filter-size of 13 × 13; (c) cross section of (b); (d) cross section of
the phase error with rms error of 0.150 rad.

3.3 Binary Dithering Techniques

Binary dithering refers to a technique that renders the original image with only 1-bit

color and meanwhile randomizes the quantization error (Wang and Zhang, 2002). Fig-

ure 3.8 illustrates the example of applying dithering techniques on a general grayscale

image and then on a sinusoidal pattern. In this subsection, the three most extensively

used dithering techniques will be introduced, which include the bayer-ordered dither-

ing technique (Bayer, 1973), the Floyd and Steinberg (1976) error-diffusion dithering

technique and the Stucki (1981) error-diffusion dithering technique.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8 Illustration of dithering technique. (a) Original image of a general 8-bit
grayscale image; (b) binary dithered image of (a) using Bayer-ordered dither-
ing technique; (c) binary dithered image of (a) with the Floyd-Steinberg
error-diffusion technique; (d) binary dithered image of (a) with the Stucki
error-diffusion technique; (e) original image of a sinusoidal fringe pattern;
(f) binary dithered image of (e) using Bayer-ordered dithering technique;
(g) binary dithered image of (e) with the Floyd-Steinberg error-diffusion
technique; (h) binary dithered image of (e) with the Stucki error-diffusion
technique

The Bayer-ordered dithering technique, rather than using a simple threshold, com-

pares the original image with a 2D grid of thresholds called the Bayer kernel, and then

the original image is quantized according to the corresponding pixels in the Bayer ker-

nel. Typically the threshold values in the dither pattern are different from one pixel

to another, and thus the randomization of quantization error is achieved. According to

Bayer (Bayer, 1973), an optimal dithered image with the noise being as high frequency

as possible can be achieved if the size of the Bayer kernel is 2N . Then the noise can be

effectively reduced by a low-pass filter. The simplest Bayer dither pattern with a size of
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2× 2 can be obtained as follows

M1 =

 0 2

3 1

 , (3.1)

Then, larger Bayer kernel can be obtained by

Mn+1 =

 4Mn 4Mn + 2Un

4Mn + 3Un 4Mn + Un

 , (3.2)

where Un refers to an n × n unit matrix. After applying the Bayer kernel, the original

image is then effectively quantized according to the threshold values in the Bayer kernel.

For the binary defocusing technique, ideal sinusoidal patterns can be quantized by this

Bayer-ordered dithering. It has been proven that Bayer-ordered dithering succeeds in

providing valid results in 3D shape measurement (Wang and Zhang, 2002)

Error-diffusion techniques are more extensively employed since they can better repre-

sent the original image with the quantization errors propagation. For each error-diffusion

technique, the pixels are quantized in a specific order such that the quantization error

of the pixel in process is propagated forward to the local unprocessed pixels. Its basic

principle can be described by the following equation

f̃(i, j) = f(i, j) +
∑
k,l∈S

h(k, l)e(i− k, j − l). (3.3)

Here, f(i, j) refers to the pixel of the original image, and f̃(i, j) stands for the modified

input pixel. The modified input pixel f̃(i, j) is then quantized and the output image is

obtained. This equation explains how the quantization error e(i, j) = f(i, j)− f̃(i, j) is

propagated to the neighboring pixels by applying a 2D weighting function h(i, j), which

is known as a diffusion kernel. There are a variety of error-diffusion algorithms based

on different selected diffusion kernels. Floyd-Steinberg error-diffusion and Stucki error-

diffusion techniques are the two most extensively used error-diffusion techniques. The
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diffusion kernel of Floyd-Steinberg error-diffusion is written as

h(i, j) =
1

16

 − ∗ 7

3 5 1

 , (3.4)

Here, − refers to the previously processed pixel, * represents the pixel in process. It is

worth to note that the kernel elements should sum to one so that the local average of

the image does not change. Similarly, the Stucki error-diffusion kernel is written as

h(i, j) =
1

42


− − ∗ 8 4

2 4 8 4 2

1 2 4 2 1

 . (3.5)

In order to illustrate the enhancement that the binary dithering technique has on the

binary defocusing technique, we did the exact same simulation for the binary dithered

patterns as for the square binary patterns, and the result is shown in Fig. 3.9. From

the simulation results, it is quite obvious that both Bayer-ordered dithering and error-

diffusion dithering can well represent a sinusoidal pattern and have significantly smaller

phase errors even with wide fringe periods. This demonstrates a great improvement in the

binary defocusing technique. In addition, as indicated in the phase errors, error-diffusion

dithering has higher accuracy than Bayer-ordered dithering.

However, binary dithering techniques also have their limitations. A simulation was

performed when the dithered pattern was nearly focused (emulated by Gaussian smooth-

ing with a small filter size of 3×3), and the result is shown in Fig. 3.10. Here, we can see

that neither the Bayer-ordered dithering pattern nor the error-diffusion dithering pattern

could well approximate a sinusoidal pattern when not sufficiently defocused, as shown

in Fig. 3.10(c) and Fig. 3.10(g). Moreover, the phase error is quite large, as shown in

Fig. 3.10(d) and Fig. 3.10(h), which will impede the accuracy in real measurement. This

limitation could be explained by the working principle of the binary dithering techniques.

Since these techniques simply apply a matrix to the whole image, they are not fully op-



www.manaraa.com

27

(a) (b)

0 50 100 150 200
0

50

100

150

200

250

X (pixel)

In
te

ns
ity

(c)

0 50 100 150 200

−0.2

−0.1

0

0.1

0.2

X (pixel)

P
ha

se
 e

rr
or

 (
ra

d)

(d)

(e) (f)

0 50 100 150 200
0

50

100

150

200

250

(g)

0 50 100 150 200

−0.2

−0.1

0

0.1

0.2

X (pixel)

P
ha

se
 e

rr
or

 (
ra

d)

(h)

Figure 3.9 Simulation of dithered patterns using a wide fringe period (T = 60 pixels).
(a) Original Bayer-ordered dithering pattern; (b) the resultant pattern of
(a) after Gaussian smoothing with filter-size of 13× 13; (c) cross section of
(b); (d) cross section of the phase error using pattern (a) with rms error
of 0.037 rad; (e) original error-diffusion dithering pattern; (f) the resultant
pattern of (e) after Gaussian smoothing with filter-size of 13× 13; (g) cross
section of (f); (h) cross section of the phase error using pattern (e) with rms
error of 0.021 rad.

timized and still leave great room for improvement. Therefore, certain efforts could be

made to optimize the binary dithered patterns in order to overcome this limitation.

3.4 Summary

In this chapter, we have introduced the basic principle of the binary defocusing tech-

nique and meanwhile illustrated the limitations of the square binary method: (1) Having

a projector that is either too focused or too defocused will case a deterioration in the

fringe quality and the measurement accuracy, and (2) it does not work well for wide fringe

stripes. Then, we introduced the binary dithering techniques that can greatly enhance

the performance of the square binary method. However, the residual error is not negli-

gible when the pattern is nearly focused. The binary dithering techniques simply apply
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Figure 3.10 Simulation of nearly focused dithered patterns using wide fringe patterns
(T = 60 pixels). (a) Original pattern; (b) the resultant pattern of (a) af-
ter Gaussian smoothing with filter-size of 3 × 3; (c) cross section of (b);
(d) cross section of the phase error with rms error of 0.100 rad; (e) origi-
nal error-diffusion dithering pattern; (f) the resultant pattern of (e) after
Gaussian smoothing with filter-size of 3 × 3; (g) cross section of (f); (h)
cross section of the phase error using pattern (e) with rms error of 0.075
rad.

matrices to the whole image; therefore, it is possible to come up with some optimization

strategies that could improve the performance of the binary dithering techniques. In

the next chapter, we will introduce our optimization frameworks that could drastically

enhance the performance of the binary dithering technique.
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CHAPTER 4. INTENSITY-OPTIMIZED DITHERING

APPROACH

In the previous chapter, it is illustrated that the binary dithering technique still has

some limitations especially when the pattern is nearly focused, which mainly results

from the fact that the binary dithering technique simply applies matrices to the whole

sinusoidal pattern. To address the limitations of binary dithering technique, an intensity-

optimized dithering approach is proposed in this research, which optimizes the binary

dithering pattern in the intensity domain. This chapter presents the local optimization

and the global optimization that we developed for this research. Part of this chapter was

originally published in Optics and Lasers in Engineering (Dai et al., 2014b,a).

4.1 Global Intensity-Optimized Dithering

The binary dithering technique can generate higher quality fringe patterns than the

squared binary patterns after projector defocusing. However, it is far from optimal

since the dithering techniques essentially apply a matrix to the whole image and do not

take full advantages of the sinusoidal structures of the desired sinusoidal fringe patterns.

Recently, Dai and Zhang (2013) proposed a phase-based optimization framework to op-

timize the Bayer-dithering technique when the projector is nearly focused. This method

performs optimization in the phase domain by iteratively mutating the status (0 or 1) of

a binary pixel. It is demonstrated that for both narrow and wide fringe stripes, substan-

tial improvements could be achieved. However, our further study found that this method
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was not very stable for different amounts of defocusing. In this section, we will introduce

our proposed intensity-based global optimization method to further improve the dither-

ing technique. We will also thoroughly compare the phase-based optimization method

with the intensity-based optimization method. Since a 3D shape measurement system

utilizes digital fringe projection techniques, the phase quality ultimately determines the

measurement quality and thus these two methods are compared in the phase domain.

Both simulations and experiments find that the phase-based optimization method is more

sensitive to the amount of defocusing, and the intensity-based optimization method can

consistently generate high-quality phase with various amounts of defocusing.

4.1.1 Methodology

The main framework of this proposed method can be described by the following steps:

• Step 1: Error Pixels Detection. Specifically, taking the difference between the

ideal sinusoidal pattern and the Gaussian smoothed binary pattern provides the

difference map, from which the error pixels are located. Here, an error pixel refers

to the pixel that has intensity error above a given threshold.

• Step 2: Error Pixel Mutation. The error pixels are mutated to their opposite

status (1s are changed to 0s and 0s are changed to 1s) . After mutations, only

good mutations are kept. The good mutation means that the intensity root-mean-

square (rms) error between the ideal sinusoidal and the Gaussian smoothed pattern

is reduced. If the rms error becomes larger, the original pixel status remains.

• Step 3: Iteration. This whole algorithm needs to be performed iteratively since

if one of the pixels is altered, its neighboring pixels would also be affected after

Gaussian smoothing. Therefore, after getting the whole pattern, it would go back to

the previous step until the algorithm converges. The convergence rule we proposed
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to use is that the improvement of intensity rms errors for a round of processing is

less than 0.01%.

• Step 4: Threshold Reduction. The threshold is reduced to a smaller number and

the whole algorithm goes back to Step 1. The whole algorithm stops when the

intensity rms error stabilizes after a number of rounds of iterations. We found that

it converges very quickly (typically approximately 15 rounds of iterations).

• Step 5: Phase Quality Evaluation. The three-step phase-shifting algorithm intro-

duced in Subsec. 2.2.1 is used to extract the phase and compare with the ideal

phase to evaluate the effectiveness of the proposed algorithm.

4.1.2 Global phase-optimized dithering

The phase-based optimization algorithm proposed by Dai and Zhang has also demon-

strated its success of improving the dithering technique overall under a certain condi-

tion (Dai and Zhang, 2013). The major framework of the phase-based optimization

method is almost the same compared with the intensity-based optimization method pre-

sented in Subsec. 4.1.1. The main difference between these two methods is that the

phase-based method optimizes the dithering technique in the phase domain while the

intensity-based method optimizes in the intensity domain. In other words, the rms error

used in Steps 1-3 of the intensity-based method is now computed in the phase domain.

Figure 4.1 shows example patterns before and after applying the optimization algo-

rithms. Fig. 4.1(a) shows the desired sinusoidal pattern with a fringe pitch, number of

pixels per fringe period, of T = 18 pixels. The Bayer-dithering technique with a kernel

size of 8 × 8 will result in the pattern shown in Fig. 4.1(b). We then optimized the

pattern with the intensity-based algorithm and the phase-based algorithm, Fig. 4.1(c)

and 4.1(d) respectively shows the result.
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(a) (b) (c) (d)

Figure 4.1 Example of binary patterns after applying different algorithms. (a) Ideal
sinusoidal pattern (T = 18 pixels); (b) Bayer-dithered pattern of (a); (c)
intensity-based optimized pattern; (d) phase-based optimized pattern.

4.1.3 Simulations

We evaluated the proposed algorithm through simulations where a wide range of

fringe stripe breadths were used to ensure that these algorithms could perform well for

different practical applications where different density of fringe pattern could be desired.

In this simulation, we used fringe pitches T= 18, 24, ..., 114, 120, pixels. The fringe

pattern resolution 800 × 600 to match the projector used in our experiments (will be

discussed in Sec. 4.1.4).
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Figure 4.2 Comparison between the intensity- and phase-based optimization methods
for each iteration. The evaluation was performed by applying a Gaussian
filter size of 5×5 pixels and standard deviation of 5/3 pixels. (a) Phase rms
error; (b) intensity rms error.
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Figure 4.2 illustrates the optimization process for a fringe pitch of T = 18 pixels. We

used a very small Gaussian filter (size: 5 × 5 pixels and standard deviation 5/3 pixels) to

evaluate the phase rms error after each iteration. The very small Gaussian filter was used

to emulate the nearly focused projector. The phase error is determined by comparing

against the ideal phase generated by ideal sinusoidal fringe patterns. Figure 4.2(a) shows

the results after approximately 15 rounds of iterations with the intensity-based and the

phase-based optimization method, where 0 iteration means the starting point where all

patterns are the original Bayer-dithered patterns. Compared with the Bayer-dithered

patterns, both optimization methods can drastically reduce the phase rms errors. This

figure also indicates that after around 10 iterations, both algorithms stabilized. In this

research, we used 15 rounds of iterations for all pattern optimizations to ensure the algo-

rithms converge. One may also notice that the phase-based optimization performs better

than the intensity-based method for this evaluation condition: Gaussian filter size is 5 ×

5 pixels and standard deviation 5/3 pixels. Furthermore, one may observe that for the

intensity-based optimization method, the phase rms error slightly increases after a num-

ber of iterations. This is because the method optimize the patterns in intensity domain

before they are evaluated in phase domain. Figure 4.2(b) illustrates the intensity rms

errors for each iterations. As expected, for the intensity-based optimization method, the

intensity rms error reduces with the increased number of iterations, and then stabilizes.

However, for the phase-based optimization method, the intensity differences actually

increase after optimization, which is completely unexpected.

We further evaluated the performance of these two types of optimization methods by

changing the amounts of defocusing. In simulation, different sizes of Gaussian filters were

applied for the optimized patterns under the filter size of 5× 5 pixels with the standard

deviation of 5/3 pixels. Figure 4.3 shows the results using three different sizes of Gaussian

filters for different optimization algorithms. Under the optimization condition (filter size

of 5 × 5 pixels), Fig. 4.3(a) shows that the phase-based optimization method always
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Figure 4.3 Performance of the optimized patterns under different amounts of defocus-
ing. (a)-(c) Phase rms errors after applying the 5 × 5, 9 × 9, and 13 × 13
Gaussian filter, respectively; (d)-(f) cross sections after applying the 5× 5,
9× 9, and 13× 13 Gaussian filter, respectively.

performs better than the intensity-based method, which is also indicated by the example

shown in Fig. 4.2(a). However, when the filter size was changed to 9×9 pixels (standard

deviation of 9/3 pixels) or 13×13 pixels (standard deviation of 13/3 pixels) meaning that

the projector is more defocused, as illustrated in Figs. 4.3(b) and 4.3(c), the performance

of the phase-based optimization method, surprisingly, deteriorates rather than improves

especially when fringe stripes are narrow (e.g., T= 18 pixels). The performance was even

worse than the original Bayer-dithered pattern, making it difficult to understand. On

the contrast, the intensity-based optimization method steadily improves with increased

filter size, as expected.

To understand the behavior of the phase-based optimization method, Figure 4.3(d)-

4.3(f) shows cross sections of the optimized patterns after applying different sizes of

Gaussian filters. It can be seen that the phase-based optimized pattern (T = 18 pixels)

is not sinusoidal, the larger filter size applied, the large deviation appears to be away
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from ideal sinusoidal. On the contrast, the intensity-based optimized pattern (again T=

18 pixels) becomes closer and closer to ideal sinusoidal patterns with the increased size

of filters. This explains that the phase-based method cannot consistently perform well

with different amounts of defocusing.

We believe that the cause of the unstable problem of the phase-based optimization

method is that we applied a three-step phase-shifting algorithm to determine the phase.

For a three-step phase-shifting algorithm, the intensity does not need to be ideal sinu-

soidal to obtain ideal phase (Wang and Zhang, 2012). This is because, as indicated in

Eq. (2.7), if the intensity of three patterns proportionally change, the phase does not

change. This means that a pixel deviates from ideal sinusoidal curve, but it somehow

maintains the proportional relationship for three patterns, the phase will be regarded as

optimized, and no further mutations should occur.

4.1.4 Experiments

The simulation shows that the intensity-based optimization method has more practi-

cal value than the phase-based optimization method in the 3D shape measurement field

since the amount of defocusing is difficult to be precisely controlled to the optimization

condition. Experiments were also carried out to further evaluate their performance. We

utilized a previously developed 3D shape measurement to perform all the experiments.

The hardware system includes a digital-light-processing (DLP) projector (Samsung SP-

P310MEMX) and a charge-coupled-device (CCD) camera (Jai Pulnix TM-6740CL). The

camera was attached with a 16 mm focal length Mega-pixel lens (Computar M1614-MP)

with F/1.4 to 16C, and was chosen to have a resolution of 640 × 480 for all experiments.

The projector has a native resolution of 800 × 600 with a projection distance of 0.49-2.80

m.

Figure 4.4 shows the phase rms error of measuring a uniform flat white board when

the projector is defocused to three different levels using the patterns optimized by the
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Figure 4.4 Experimental results of the optimized patterns under different amounts of
defocusing. (a)-(c) Representative squared binary patterns with defocusing
level 1 to level 3; (d)-(f) phase rms errors for these three different levels of
defocusing using these two optimized fringe patterns with different fringe
periods.

phase-based and the intensity-based algorithms. The phase error was computed by tak-

ing the difference between the phase obtained from these patterns and the phase obtained

by a nine-step phase-shifting algorithm (as introduced in Subsec. 2.2.2 with N = 9) with

a fringe period of T = 18 pixels. Figures 4.4(a)-4.4(c) represent three different levels of

defocusing used for a standard squared binary patterns with a fringe period of 18 pixels.

The projector starts with being nearly focused to being more defocused. Figures 4.4(d)-

4.4(f) show the phase rms errors. This experimental results indicate that when the

projector is nearly focused, which is similar to our optimization condition (small amount

of defocusing), the phase-based method results in smaller phase rms errors, or better

phase quality than the intensity-based method. However, if the projector is more de-

focused, as shown in Fig. 4.4(e), the intensity-based method starts outperforming the

phase-based method in many cases, especially when fringe period is 18 pixels. Further-

more, Figure 4.4(f) shows that if the projector is more defocused, the intensity-based
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method performs consistently and better than the phase-based method for almost all

fringe periods. These experiments further confirm that the intensity-based optimiza-

tion method indeed can consistently generate high-quality phase while the phase-based

method only generate high-quality measurement under a given condition.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5 Measurement results of a complex 3D sculpture. (a) One of the phase-op-
timized fringe patterns at defocusing level 1; (b)-(d) 3D results using the
phase-based optimization method with amount of defocusing level 1 two
level 3, respectively; (e) one of the intensity-optimized fringe patterns at
defocusing level 1; (f)-(h) 3D results using the intensity-based optimization
method with amount of defocusing level 1 two level 3, respectively

We also measured a more complex 3D sculpture to visually compare the differences.

Figure 4.5 shows the results and Fig. 4.6 shows the zoom-in views to better visualize the

differences. In this experiment, the fringe period we used was T = 18 pixels. The abso-

lute phase was obtained by a three-frequency phase-shifting algorithm and the temporal
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(a) (b) (c)

(d) (e) (f)

Figure 4.6 Close-up view of 3D results shown in Fig. 4.5. (a)-(c) Zoom-in views of the
results shown in Fig. 4.5(b)-4.5(d), respectively; (d)-(f) zoom-in views of the
results shown in Fig. 4.5(f)-4.5(h), respectively.

phase-unwrapping method whose principle was introduced in Ref. (Wang and Zhang,

2011). The other two fringe periods were 21 and 159 pixels. Figures 4.5(b)-4.5(d) and

4.6(a)-4.6(c) show the increased defocusing amounts for the phase-based optimization

method. It appears that the phase-based method did not visually improve the quality

of measurement when the amount of defocusing was increased. As a comparison, the

results, as illustrated in Figs. 4.5(f)-4.5(h) and 4.6(d)-4.6(f), from the intensity-based

optimization patterns are improved when the projector defocusing amount is increased.

Even though when the projector is nearly focused, the result from the phase-based op-

timized method appears slightly better than the intensity-based optimization method,

overall, the intensity-based optimization method consistently outperforms the phase-
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based optimization method.

4.2 Local Intensity-Optimized Dithering

In the previous section, we have illustrated that our global intensity-optimized dither-

ing approach could drastically improve the performance of traditional dithering tech-

niques. However, this global optimization method still has some limitations: (1) since

the algorithm is performed globally, it is very time-consuming usually taking quite a

long time to converge, and (2) rather than starting with random binary pattern, our

optimization algorithm started with traditional dithering patterns and then mutated it

based on the difference with ideal sinusoidal patterns which still leaves some room for

improvement. The global optimization starting with random binary pattern, however,

will be Non-deterministic Polynomial-time (NP) hard, making it impractical to solve the

problem mathematically. In this section, we propose a local intensity-optimized dither-

ing method which overcomes the aforementioned limitations. This technique comes from

our two observations: (1) the binary patterns should be symmetric for one fringe stripe

since the desired sinusoidal patterns are symmetric, and (2) the binary pattern should be

periodical in both x and y directions since the desired sinusoidal patterns are periodical

in both directions. Based on these two observations, it is practical that we optimize a

subset of the image and then generate a whole pattern using symmetry and periodic-

ity. Both simulations and experiments have proven that our local intensity-optimized

dithering technique can further enhance the performance of binary dithering technique.

It should be noted that instead of comparing the optimization approach with Bayer-

ordered dithering as we did for global optimization in Subsec 4.1.3, we compared our

local optimization approach with error-diffusion dithering. This is because according to

the research results shown in Sec. 3.3, error-diffusion dithering has a better accuracy

than Bayer-ordered dithering in measurement results, so here we chose error-diffusion
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dithering as the control group.

4.2.1 Methodology

Instead of optimizing the desired fringe pattern as a whole (e.g., 800 × 600) as our

previously proposed (Lohry and Zhang, 2013; Dai and Zhang, 2013; Dai et al., 2014b),

we propose to optimize a subset called binary patch, and then tile the patch to generate

the full-size patterns using symmetry and periodicity. Unlike those PWM techniques,

the proposed technique belongs to area modulation technique where the modulations

occur in both x and y directions. Compared with the dithering techniques, the proposed

technique strives to generate higher quality fringe patterns with narrow fringe stripes,

and similar quality for broad fringe stripes. In addition, unlike the previously proposed

method (Lohry and Zhang, 2013; Dai and Zhang, 2013; Dai et al., 2014b) where the

optimization is performed under one defocusing level, the proposed method improves

fringe quality for different amounts of defocusing.

Assume that the desired sinusoidal fringe patterns vary along x direction: the best-fit

binary pattern should be symmetric along x direction for one fringe period (T ); and it

should be periodic along the y direction. Row period, Sy, is defined as the period along

y direction. We believe that different breadths of fringe patterns require different opti-

mization strategies, and thus we could utilize different row periods for different breadths

of fringe patterns. Instead of directly solving the best-fit NP -hard problem, we propose

to modulate a small binary patch for each fringe pattern, and then tile the patch to-

gether using symmetry and periodicity of the fringe pattern. The process of modulating

a binary patch to generate the whole binary pattern can be divided into the following

major steps:

Step 1: Patch Formation. This step initializes the Sy (2 to 10), and defines the

number of pixels along x direction. The patch is formed as a dimension of Sx× Sy, here

Sx = T/2 is one half fringe period.
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Step 2: Patch Initialization. Randomly assign each pixel of the Sx×Sy patch with 0

or 1.

Step 3: Patch Optimization. For each pixel in the binary patch, its binary status is

mutated (i.e., 1 to 0 or 0 to 1). If this mutation improves fringe quality, i.e., the intensity

root-mean-square (rms) difference between the Gaussian smoothed pattern and the ideal

sinusoidal pattern is smaller, the mutation is regarded as a good mutation. It should be

noted that mutating one pixel will influence its neighborhood after applying a Gaussian

filter. Therefore, the optimization is iteratively performed until the algorithm converges

when the rms error difference for a new round of iterations is less than 0.01%.

Step 4: Patch Variation. Repeat Steps 2-3 for a number of times (ranging from

50-500 times) to generate a number of good candidates for each Sy, a number of good

patches could be generated because of the random initialization.

Step 5: Patch Dimension Mutation. Change Sy to another value (i.e., 2 to 10), and

go to Step 2.

Step 6: Patch Selection. After a number of patch mutations, a set of optimized

patches are generated. From these patches, the best patch is selected based on the

following two rules: (1) phase error does not change drastically if a different size of

Gaussian filter is applied; and (2) the resultant phase error is consistently small. These

two rules imply that the best patch under one amount of defocusing may not be chosen.

This is one of the fundamental difference between our algorithm and the previously

developed genetic algorithm (Lohry and Zhang, 2013).

Step 7: Fringe pattern generation. Utilizing the symmetry and periodicity properties

of the fringe patterns, the desired size fringe pattern was generated by tiling the best

patch together.

Figure 4.7 illustrates how to select the final pattern to use. Figures 4.7(a)-4.7(c) shows

three examples of optimized patterns when fringe period T = 18. Pattern 1 performs the

best when the amounts of defocusing is larger (Gaussian filter size 11 or larger). If one
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considers the well defocused projector, this might be a good candidate. However, our

major focus is to improve the fringe quality when the projector is nearly focused (i.e.,

Gaussian filter size is small). However, this candidate does not perform well with small

amount of defocusing. Therefore, we did not chose this candidate. Pattern 2 depicts the

smallest phase error when the filter size is 7 or 11, but does not perform consistently

well. This one was not chosen since we require the pattern consistently perform well

over different amounts of defocusing. Pattern 3 is the one we chose because this pattern

performs consistently across different amounts of defocusing.

From this figure, one may also notice that the phase rms error fluctuates with the

increased size of Gaussian filter. This is because our proposed optimization was per-

formed under a special amount of defocusing, i.e., a fixed size of Gaussian filter (5 x 5

in our case). However, because the optimized pattern is the best pattern among those

candidates, is not the result of exhaustive search, we cannot guarantee that the phase

rms error is still minimized for different amounts of defocusing. Nevertheless, even with

such fluctuations, the phase rms error is always smaller than the error-diffusion dithering

technique, as will be shown in Fig 4.8 and Fig. 4.9, indicating the success of the proposed

method.

4.2.2 Simulations

We simulated different amounts of defocusing by applying different sizes of Gaussian

filters. The smallest Gaussian filter was 5 × 5 with a standard deviation of 5/3 pixels,

and the largest was 13× 13 with a standard deviation of 13/3 pixels. Gaussian filter size

of 5×5 represents the case that the projector is nearly focused, whilst 13×13 represents

the case when the projector is defocused to a certain degree. We did not use larger

filter sizes as they will jeopardize the fringe contrast, which is not usually used in real

measurements. The phase error ∆Φ was calculated by taking the difference between the

phase obtained from the smoothed binary patterns, Φb, and the phase obtained from the



www.manaraa.com

43

(a) (b) (c)

5 7 9 11 13
0

0.005

0.01

Filter size (pixel)

P
ha

se
 r

m
s 

er
ro

r 
(r

ad
)

 

 

Pattern 1
Pattern 2
Pattern 3

(d)

Figure 4.7 Example of selecting the pattern from the optimized binary patches. (a)
Pattern 1: T = 18, Sy = 5; (b) pattern 2: T = 18, Sy = 4; (c) pattern 3:
T = 18, Sy = 2; (d) phase rms error with different amounts of defocusing.

ideal sinusoidal fringe patterns, Φi. ∆Φo = Φb
o−Φi is the phase error obtained from the

optimized binary patterns, and ∆Φe = Φb
e−Φi is the phase error using the error-diffusion

dithered patterns.

Figure 4.8 shows the simulation results. The simulation results clearly show that the

proposed method can substantially improve the fringe quality for different amounts of

defocusing. For instance, the improvement is over 40% when fringe period T = 18 pixels.

It also indicates that when the fringe period increases, the improvement decreases. This

is because the error-diffusion technique has already generated good quality sinusoidals

for low-frequency patterns.
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Figure 4.8 Comparing the phase quality between the proposed method and the Floy-
d-Steinberg error-diffusion technique. (a) Gaussian filter size of 5× 5 pixels
and standard deviation of 5/3 pixels; (b) Gaussian filter size of 13×13 pixels
and standard deviation of 13/3 pixels.

4.2.3 Experiments

We also conducted experiments to verify the performance of the proposed technique.

The 3D shape measurement system includes a digital-light-processing (DLP) projector

(Samsung SP-P310MEMX) and a charge-coupled-device (CCD) camera (Jai Pulnix TM-

6740CL). The camera is attached with a 16 mm focal length Mega-pixel lens (Computar

M1614-MP) with F/1.4 to 16C. The camera has a resolution of 640 × 480, and the

projector has a native resolution of 800 × 600 with a projection distance of 0.49–2.80 m.

We experimentally verified the simulation results by measuring a flat white board

using all these fringe patterns. Figure 4.9 shows the results. The phase errors were de-

termined by taking the difference between the phase obtained from the binary patterns

(the dithered patterns and the proposed patterns) after Gaussian smoothing and the

phase obtained from the ideal sinusoidal patterns. Again, the proposed algorithm gener-

ated better results than the error-diffusion algorithm at different amounts of defocusing.

A more complex 3D statue was measured to visually compare these methods. Fig-

ure 4.10 shows the results. Figure 4.10(a) shows one of the binary patterns, indicating

that the projector was nearly focused. In this experiment, we used the fringe period of

T = 18 pixels, and converted the phase to depth using the simple reference-plane based
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Figure 4.9 Experimentally comparing the phase quality between the proposed method
and the Floyd-Steinberg error-diffusion technique. (a) Nearly focused; (b)
slightly defocused.

method discussed in Ref. (Xu et al., 2011). This figure shows that at different amounts

of defocusing, the results obtained by using the proposed method are much better than

the error-diffusion method, or the squared binary technique.

Figure 4.11 shows the zoom-in views around the nose areas for the measurement

results. These results clearly show that when the projector is nearly focused, neither

the squared binary method nor the dithering technique could provide reasonable quality

measurement; and the proposed technique could perform much better than both meth-

ods. When projector is slightly defocused, all these techniques can perform well with the

proposed method yielding the best result, again. It is interesting to notice that when

the projector is nearly focused, the standard error-diffusion dithering technique actually

cannot outperform the squared binary method. This is because the error-diffusion tech-

nique tries to keep low frequency information while sacrifices high frequency information,

and the fringe frequency here is quite high for fringe period of 18 pixels.

4.3 Discussions And Conclusions

4.3.1 Global optimization

Global intensity-based optimization can essentially improve the performance of Bayer-

ordered dithering technique. Moreover, compared with the phase-based optimization
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10 Measurement results of a complex 3D statue. (a) One nearly focused fringe
pattern; (b)-(d) respectively shows the 3D result with squared binary pat-
tern, the dithered patterns, and the proposed patterns when the projector is
nearly focused; (e) one slightly defocused fringe pattern; (f)-(h) respective
shows the 3D result with the squared binary pattern, the dithered patterns,
and the proposed patterns when the projector is slightly defocused.

method, this intensity-based method can more consistently generate high-quality phase

under different amounts of defocusing, while the phase-based optimization method can

perform better only under a certain condition, especially when fringe stripes are narrow.

From our simulation and experimental results, it seems that intensity-based optimization

method has more practical value than the phase-based optimization method. This is

because it is very difficult to precisely control the measurement condition to match with

the optimal condition requirements of the phase-based method.
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(a) (b) (c) (d) (e) (f)

Figure 4.11 Zoom-in views around the nose areas for measurement results with different
methods. (a)-(c) respectively shows the zoom-in view of the results shown
in Fig. 4.10(b)-4.10(d) when the fringe is nearly focused; (d)-(f) respectively
shows the zoom-in view of the results shown in Fig. 4.10(b)-4.10(d) when
the projector is slightly defocused.

4.3.2 Local optimization

Local intensity-based optimization, as shown both in simulations and experiments,

can drastically improve a more advanced error-diffusion dithering for different amounts

of defocusing. For local intensity-based optimization framework, it inherently adopted

genetic algorithm for pattern evolution and optimization. Compared with the genetic

optimization algorithm proposed previously (Lohry and Zhang, 2013) which did a global

optimization toward the image, the proposed method has the merit of speed (seconds

instead of hours). It also has the advantage of generating periodical patterns, making it

easier to be realized on hardware since the element used is very small. In addition, the

proposed algorithm can ensure high-quality phase for different amounts of defocusing

while the genetic algorithm cannot.

Compared with all previous research along the same direction (Lohry and Zhang,

2013; Wang and Zhang, 2002; Dai and Zhang, 2013), this proposed method is fundamen-

tally different from any of them, where they either directly generated binary patterns

using a dithering technique (Wang and Zhang, 2002), or modified the dithered patterns

through some optimization strategies (Lohry and Zhang, 2013; Dai and Zhang, 2013).

In other words, they all started from the dithered patterns. The proposed technique, in
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contrast, starts with randomly assigned patterns, and performs optimization.

However, the proposed algorithm does involve some manual process when two can-

didates generates similar results. For example, for fringe period T = 24, we have two

candidate patches shown in Fig. 4.12. Pattern 1 was chosen because the phase error per-

forms more consistently across different amounts of defocusing, as shown in Fig. 4.12(c).

One may notice that Pattern 1 actually has larger phase error when filter size is 9 × 9

than Pattern 2.
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Figure 4.12 Example of selecting the pattern from the optimized binary patches. (a)
Pattern 1: T = 24, Sy = 6; (b) pattern 2: T = 24, Sy = 9; (c) phase rms
error with different amounts of defocusing.
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4.4 Summary

In this chapter, we presented our global and local intensity-optimized dithering ap-

proaches. The global optimization strategy drastically improves the performance of

Bayer-ordered dithering over different fringe periods. Moreover, compared with phase-

based optimization, it has a more consistent performance over different amounts of defo-

cusing. The local optimization strategy can enhance the performance of a more advanced

error-diffusion dithering and save the computational time of the global algorithm. Both

simulations and experiments have verified the success of our proposed approaches.
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CHAPTER 5. SUMMARY AND FUTURE WORK

This chapter summarizes the contribution of this dissertation research and provides

some perspectives about possible future research.

5.1 Research Achievements

In this research, we presented two new intensity-optimized dithering approaches that

further optimized the binary dithering technique for high-quality 3D shape measurement.

The efforts were first made to optimize the dithered pattern globally based on its differ-

ence with the intensities of ideal sinusoidal patterns. Our global optimization framework

can substantially improve the performance of the Bayer-ordered dithering technique by

25% overall and up to 50% for the small fringe period (e.g. T = 18 pixels). More-

over, compared with previous optimization frameworks, our optimization framework is

able to provide consistent accuracy over different amounts of defocusing. However, this

global optimization method is still not the perfect solution since the algorithm is per-

formed globally; this is usually computational expensive. Therefore, a local optimization

method was proposed which only optimizes a small block of the whole image and builds

up the whole image based on symmetry and periodicity. The local optimization algo-

rithm, as shown both in simulation and experiments, can improve the performance of a

more advanced error-diffusion dithering technique by 20% overall, and up to 40% for the

smallest fringe stripe (e.g. T = 18 pixels).

On the whole, the local intensity-based optimization is recommended since it enhances
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the performance of a more accurate error-diffusion dithering technique. Moreover, since

the algorithm is performed locally, it greatly saves the amount of time that should be

used to generate one set of optimized fringe patterns.

5.2 Future Work

The local optimization framework leaves some room for improvement. We suggest

methods to further overcome two major limitations:

• Algorithm automation. As discussed in Subsec. 4.3.2, the local optimization algo-

rithm involves some manual selection process between candidate patterns especially

when the two candidate patterns provide similar performances. Therefore, in the

future, we should seek to make the whole algorithm automatic. In order to realize

an automatic search of optimal patterns, global quantified selection criteria is nec-

essary, and efforts should be made to ensure that the selected patterns will perform

consistently over different fringe periods and degrees of defocusing.

• Improving local optimization algorithm. Since the local optimization algorithm is

inherently combined with a genetic algorithm, we did not do exhaustive search on

all possible patterns, which means that our selected pattern might not be optimal.

Therefore, it could be possible to come up with a more advanced searching strategy

that could achieve a higher convergence rate, and meanwhile maintain a consistent

accuracy.
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